Algebra 2

5-03 Graphing Radical Equations

 $y = \sqrt{x}$

Domain: _____

Range: _____

 $y = \sqrt[3]{x}$

Domain: _____

Range:

How graphs transform

$$y = a\sqrt{bx - h} + k$$
$$y = a\sqrt[3]{bx - h} + k$$

- Where
 - o *a* ______ by factor of *a*
 - \circ b _____ by factor of $\frac{1}{h}$
 - If *a* is –, _____ over ____

- If *b* is –, _____ over ____
- \circ h
- o k_____

Graph by making a _______.

Describe the transformation of f represented by g. Then graph each function.

$$f(x) = \sqrt{x}; g(x) = \sqrt{x+2} - 3$$

$$f(x) = \sqrt[3]{x}; g(x) = -\sqrt[3]{2x}$$

The function $E(d) = 0.25\sqrt{d}$ approximates the number of seconds it takes a dropped object to fall d feet on Earth. The function $J(d) = 0.63 \cdot E(d)$ approximates the number of seconds it takes a dropped object to fall d feet on Jupiter. How long does it take a dropped object to fall 81 feet on Jupiter?

Let the graph of g be a horizontal stretch by a factor of 3, followed by a translation 6 units right of the graph of $f(x) = \sqrt[3]{x}$. Write a rule for g.

Graphing horizontal parabolas and circles

- 1. _____ the equation for y.
- 2. Create a ______.
- 3. _____ the points and _____ graph.

Graph $-\frac{1}{5}y^2 = x$. Identify the vertex and the direction that the parabola opens.

Graph $x^2 + y^2 = 49$. Identify the radius and the intercepts.

