Algebra 2

5-03 Graphing Radical Equations

$y=\sqrt{x}$
Domain: \qquad
Range: \qquad
$y=\sqrt[3]{x}$
Domain: \qquad

- Where
- a \qquad by factor of a
- If b is -, \qquad over \qquad
- b \qquad by factor of $\frac{1}{b}$
- h \qquad
- If a is -, \qquad over \qquad
- k \qquad
- Graph by making a \qquad .

Describe the transformation of f represented by g. Then graph each function.
$f(x)=\sqrt{x} ; g(x)=\sqrt{x+2}-3$

$f(x)=\sqrt[3]{x} ; g(x)=-\sqrt[3]{2 x}$

The function $E(d)=0.25 \sqrt{d}$ approximates the number of seconds it takes a dropped object to fall d feet on Earth. The function $J(d)=0.63 \cdot E(d)$ approximates the number of seconds it takes a dropped object to fall d feet on Jupiter. How long does it take a dropped object to fall 81 feet on Jupiter?
\qquad

Let the graph of g be a horizontal stretch by a factor of 3 , followed by a translation 6 units right of the graph of $f(x)=\sqrt[3]{x}$. Write a rule for g.

Graphing horizontal parabolas and circles

1. \qquad the equation for y.
2. Create a \qquad .
3. \qquad the points and \qquad graph.
Graph $-\frac{1}{5} y^{2}=x$. Identify the vertex and the direction that the parabola opens.

Graph $x^{2}+y^{2}=49$. Identify the radius and the intercepts.

